COMPSCI 389
Introduction to Machine Learning

Models, Algorithm Template, Nearest Neighbor
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Review

* Input output pair (X,Y)
* X:Input, features, attributes, covariates, or predictors
* Numerical (discrete/continuous), categorical (hominal/ordinal), etc.

* Y: Output, label, or target
* Regression:Y is continuous.
e Classification: Y is discrete

* Data set: (X}, Y;)i4
* Query: An additional input X
e Goal: Predict the label Y associated with X.

Models (Supervised Learning)

* Amodel is a mechanism that maps input data to predictions.

* (Offline) ML algorithms take data sets as input and produce
~‘models as output.

Online ML algorithms can receive data

/

over time, improving their models as more -

data becomes available.

Bowom s O

43298
43299
43300
43301
43302

physics
622.60
538.00
455.18
756.91
584.54

519.55
816.39
798.75
527.66
512.56

biology history English geography literature

491.56
490.58
440.00
679.62
049.84

622.20
851.95
817.58
44382
41541

439.93
400.59
570.86
531.28
637.43

6560.90
732.39
731.98
545.88
517.36

707.64
529.05
417.54
583.63

609.08

543.48
621.63
648.42
624.18
532.37

Data Set

663.65
53228
453.53
53442
670.46

643.05
810.68
751.30
420.25
592.30

557.09
447.23
425.87
521.40
51538

579.90
666.79
648.67
676.80
382.20

Portu,

71137 73131
527.58 379.14
47563 476.11
59241 783.76
572.52 58125

584.80 581.25
70522 781.01
66205 773.15
58341 39546
538.35 448.02

guese math chemistry gpa

509.80 1.33333
488.64 2.98333
407.15 1.97333
588.26 2.53333
529.04 1.58667

57392 276333
831.76 3.81667
83525 3.75000
509.80 2.50000
496.39 3.16667

A query can be one or more feature vectors.

- -
Query « —
798.75 817.58 73198 64842 751.30 648.67 B62.05 77315 835.25
527.66 443.82 54588 624.18 420.25 676.80 533.41 39546 509.80

'—] ML Algorithm

Predictions are given for

375000 4. = -~ each feature vector in the

2.50000 query.

Prediction 3

Training/Fitting

* ML algorithms could take a data set and query at the same time
and output a prediction for the query.

* Each time a new query is given, the algorithm re-processes the entire data
set.

* |dea: More efficient to preprocess the data set, computing
relevant statistics and quantities.
* Given a query, the algorithm might reference the statistics and quantities
it computed without re-referencing the data set at all!
* This pre-processing of the data set is called training.
* Sometimes: “Training the model”

* Sometimes: “Fitting the model to data”
« Sometimes: “Pre-processing data”

Scikit-Learn Models

* Scikit-Learn is a popular ML library in python.

* It has objects called “models”.

* These “models” are more than just models —they are complete ML
algorithms.

Scikit-Learn Models

* Scikit-Learn models implement the functions:

s fit(self, X, y):Thefunction for fitting the model to the data
(training the model given the data / preprocessing the data).

* X:A 2D array-like structure (e.g., DataFrame) representing the features. Each row is
a point and each column is a feature.

* yv: A 1D array-like structure (e.g., Series) representing the target values
* Returns self to simplify chaining together operations.
* predict(self, X):Thefunctionfor producing predictions given
queries.

* X: A 2D array-like structure representing the data for which predictions are to be
made. Each row is a sample and each column is a feature.

* Returns a numpy array of predicted labels/values.

* Note: Ideally fit and predict are compatible with X and y being
DataFrames or numpy arrays.

Scikit-Learn Models

from sklearn.base import BaseEstimator
import numpy as np

class CustomMLAlgorithm(BaseEstimator):
def init (self, paraml=1, param2=2):
Initialization code

self.paraml = paraml

self.param2

param2

Scikit-Learn Models

from sklearn.base import BaseEstimator
import numpy as np

class CustomMLAlgorithm(BaseEstimator):
def init (self, paraml=1, param2=2):
Initialization code
self.paraml

paraml
self.param2

param2

def fit(self, X, y):
Training code
Implement your training algorithm here
return self

Scikit-Learn Models

from sklearn.base import BaseEstimator
import numpy as np

class CustomMLAlgorithm(BaseEstimator):
def init (self, paraml=1, param2=2):
Initialization code
self.paraml

paraml
self.param2

param2

def fit(self, X, y):
Training code
Implement your training algorithm here
return self

def predict(self, X):
Prediction code
Implement your prediction algorithm here
return np.zeros(len(X))

Scikit-Learn Models

from sklearn.base import BaseEstimator « Given data set (X, y) and query:

import numpy as np model = CustomMLAlgorithm()

class CustomMLAlgorithm(BaseEstimator): model.fit(X,y)
def init (self, paraml=1, param2=2): predictions = model.predict(query)
Initialization code
self.paraml = paraml
self.param2 = param2

def fit(self, X, y):
Training code
Implement your training algorithm here
return self

def predict(self, X):
Prediction code
Implement your prediction algorithm here

return np.zeros(len(X)) 10

Nearest Neighbor

* A particularly simple yet effective ML algorithm based on the core idea:

When presented with a query, find the data point (row) that is
most similar to the query and give the label associated with

this most-similar point as the prediction.

* We can map this to fit/predict functions:

e £it:Storethe data

* predict: Foreach query row do the following
* Loop over each row in the training data, computing the Euclidean distance between the
query and the row.
* Create an array holding the labels from the rows with the smallest distance to the query
feature vector (often just one element).

* Return an arbitrary (e.g., random) element of the array.

11

Query:

4147 456.95| 705.58| 499.43| 513.53| 543.15| 408.51| 384.38| 442.49
Iphysics biology history English geograj literatu Portugt math chemistry
622.6 491.56 439.93 707.64 663.65 557.09 71137 731.31 509.8
538 490.58 40659 529.05 532.28 447.23 527.58 379.14 488.64 .o
455.18 440 570.86 417.54 453.53 425.87 475.63 47611 407.15)
756.91 679.62 531.28 583.63 534.42 521.4 592.41 78376 588.26
584.54 649.84 637.43 609.06 670.46 51538 572.52 581.25 529.04
325.99 466.74 597.06 554.43 53577 717.03 477.6 503.82 422.92
622.6 587.04 59885 603.32 690.7 652.86 533.05 7553 628.73
527.65 559.99 758.37 669.71 64562 64867 539.23 470.78 486.13
647.64 687.83 630.61 613.95 557.43 739.94 557.27 557.14 632.54

distance

gpa

Predictionl

12

1.33333
2.98333
1.97333
2.53333
1.58667
1.66667
3.72333
3.08333

0

Implementing Nearest Neighbor

* See 5 Nearest Neighbor.ipynb.

* When going through the following slides, you can follow along in
this notebook.

13

1nit
* Qur initial nearest neighbor implementation has no
hyperparameters or initialization to perform, so we do not
implement init
* Hyperparameter: A setting or value that changes the behavior of an ML

algorithm.
* We will revisit hyperparameters later when we encounter them.

14

fit
class NaiveNearestNeighbor(BaseEstimator):
def fit(self, X, y):

. We want to be compatible # Convert X and y to NumPy arrays if they are DataFrames.
with DataFrames or NumPy # This makes fit compatible with numpy arrays or DataFrames
arrays. >»if isinstance(X, pd.DataFrame):

* We will convert DataFrames X = X.values

to NumPy arrays. if isinstance(y, pd.Series):

y = y.values

Store the training data and labels.
self.X data = X

self.y data =y

return self

15

def predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):

predj—Ct X = X.values

We will iteratively load predictions, so it starts empty
predictions = []

° NOtICG that predICt # Loop over rows in the query

returns a prediction for x in X:
fOI‘ eaCh roOw in X # Compute distances from x to all points in X_data.

Find the nearest neighbors (handling ties)

Append this label to predictions

Return the array of predictions we have created
return np.array(predictions)

def predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):

predict X = X.values

We will iteratively load predictions, so it starts empty
predictions = []

* NOt|Ce that pr?dl.Ct # Loop over rows in the query
returns a prediction for x in X:
. # Compute distances from x to all points in X _data.
for each row in X.

differences = self.X data - x

squared_differences = differences ** 2

sum_squared_differences = np.sum(squared_differences, axis=1)
distances = np.sqgrt(sum_squared _differences)

distances = np.sqgrt(np.sum((self.X data - x) ** 2, axis=1l))

Find the nearest neighbors (handling ties)

Append this label to predictions

Return the array of predictions we have created
return np.array(predictions)

def predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):

predict X = X.values

We will iteratively load predictions, so it starts empty
predictions = []

Loop over rows in the query
for x in X:

o h returns a tuple of # Compute distances from x to all points in X _data.
NP e s e P # differences = self.X data - x

arrays, one for each \ # squared_differences = differences ** 2

dimension. sum_squared_differences = np.sum(squared_differences, axis=1)
* |f we gave a 2d array, [0] # dis np.sqrt(sum_squared_differences)
would be the row index and distances = np.s .sum((self.X_data - x) ** 2, axis=1))
[1] would be the col index.
« distancesis 1-D, so there is # Find the nearest neighbors (handlin
only one element in the tuple min_distance = np.min(distances)
here, so we pass [0] to get the nearest_neighbors = np.where(distances == min_distance)[0]
element nearest_label = self.y_data[nearest_neighbors[@]]
° If many equally close, this # Append this label to predictions
implementation selects the
first one.

Return the array of predictions we have created
return np.array(predictions)

def predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):

predj—Ct X = X.values

We will iteratively load predictions, so it starts empty
predictions = []

Loop over rows in the query
for x in X:
Compute distances from x to all points in X _data.
differences = self.X data - x
squared_differences = differences ** 2
sum_squared_differences = np.sum(squared_differences, axis=1)
distances = np.sqgrt(sum_squared _differences)
distances = np.sqgrt(np.sum((self.X data - x) ** 2, axis=1l))

Find the nearest neighbors (handling ties)

min_distance = np.min(distances)

nearest _neighbors = np.where(distances == min_distance)[0]
nearest label = self.y data[nearest neighbors[@]]

Append this label to predictions
predictions.append(nearest_label)

Return the array of predictions we have created
return np.array(predictions)

Applying NaiveNearestNeighbor
to GPA Data

df = pd.read _csv("https://people.cs.umass.edu/~pthomas/courses/COMPSCI_389 Spring2024/GPA.csv", delimiter="',")
Split the inputs from the outputs

X = df.iloc[:,:-1]
y = df.iloc[:,-1]

20

Applying NaiveNearestNeighbor
to GPA Data

Create the Nearest Neighbor Model
model = NaiveNearestNeighbor()

Call fit to train the model (in this case, just store the data set)
model.fit(X,y)

Create two query points (in reality these would be new applicants)
guery = X.head(2)

Get predictions for the query points
predictions = model.predict(query)
print(predictions)

v/ 0.0s

[1.33333 2.98333]

21

Optimizing Nearest Neighbor Search

* Our predict function loops over the entire data set for each
query point

* We can use data structures for finding nearest neighbors to make
our implementation more efficient.

* K-D Trees: Effective for low-dimensional data, but performance
decreases with higher dimensions.

 Ball Trees: Better suited for higher dimensional spaces.
* SciKit-Learn includes optimized implementations of both
* We will update our implementation to use a K-D tree.

22

from sklearn.neighbors import KDTree

class NearestNeighbor(BaseEstimator):
def fit(self, X, y):
Convert X and y to NumPy arrays if they are DataFrames.
This makes fit compatible with numpy arrays or DataFrames
if isinstance(X, pd.DataFrame):
X = X.values
if isinstance(y, pd.Series):
y = y.values

Store the training data and labels.
self.X data = X
self.y data =y

Create a KDTree for efficient nearest neighbor search
self.tree = KDTree(X)

return self

23

def predict(self, X):
Convert X to a NumPy array if it's a DataFrame
if isinstance(X, pd.DataFrame):
X = X.values

Query the tree for the nearest neighbors of all points in X.
ind will be a 2D array where ind[1,j] 1is the index of the
j'th nearest point to the i'th row in X.

dist, ind = self.tree.query(X, k=1)

Extract the nearest labels.

ind[:,0] are the indices of the nearest neighbors to each
query (each row in x))

return self.y data[ind[:,0]]

24

def predict(self, X):
k specifies the number of # Convert X to a NumPy array if it's a DataFrame
nearest neighborsto query. ™~ if isinstance(X, pd.DataFrame):
X = X.values

dist isa2D array holding
the distances to each of the # Query the e for the nearest neighbors of all points in X.

nearest neighbors of each \ # ind will be a 2D™array where ind[1i,]j] is the index of the
query. # j'th nearest point to i'th row in X.

dist, ind = self.tree.query(X,>k=1)
y data was stored during

the fit call. # Extract the nearest labels.

ind[:,0] are the indices of the nearest neighbors to each
query (each row in x))
return self.y data[ind[:,0]]

25

Implementation Comparison

* Note: When there are multiple nearest neighbors, the algorithms
may not return the same values.

* Let’s run each implementation of Nearest Neighbor 100 times on
the GPA data (with 2 queries each time).

 Which will be faster?
* How much faster?

Average runtime for NaiveNearestNeighbor: ©.0033271799999056383 seconds
Average runtime for NearestNeighbor: ©.08059094200027175 seconds

* Question: Why do you think our naive algorithm was faster?

* Answer: The overhead cost of building the K-D tree didn’t pay of
with just 2 queries.

26

Implementation Comparison (cont.)

* Let’s run 5,000 points through as queries.
* Recall: 43,303 points total.

Average runtime for NaiveNearestNeighbor: 8.219239899946842 seconds
Average runtime for NearestNeighbor: ©.09280269994633272 seconds

27

Intermission

e Class will resume in 5 minutes.

ANY QUESTIONS?

143 144 10 1-0h 140

Feel free to:
e Stand up and stretch.

w 00

1) =am 3404

immmline

* Leave the room.
* Talk to those around you.

* Write a question on a notecard and
add it to the stack at the front of the
room.

o
N

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Review
	Slide 3: Models (Supervised Learning)
	Slide 4: Training/Fitting
	Slide 5: Scikit-Learn Models
	Slide 6: Scikit-Learn Models
	Slide 7: Scikit-Learn Models
	Slide 8: Scikit-Learn Models
	Slide 9: Scikit-Learn Models
	Slide 10: Scikit-Learn Models
	Slide 11: Nearest Neighbor
	Slide 12
	Slide 13: Implementing Nearest Neighbor
	Slide 14: __init__
	Slide 15: fit
	Slide 16: predict
	Slide 17: predict
	Slide 18: predict
	Slide 19: predict
	Slide 20: Applying NaiveNearestNeighbor to GPA Data
	Slide 21: Applying NaiveNearestNeighbor to GPA Data
	Slide 22: Optimizing Nearest Neighbor Search
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Implementation Comparison
	Slide 27: Implementation Comparison (cont.)
	Slide 28: Intermission

